THIRD SEMESTER - NOVEMBER 2015
PH 3506 - MATHEMATICAL PHYSICS
Date: 04/11/2015
Time : 09:00-12:00

$\underline{\text { PART - A }}$

Answer ALL the questions:
(10 x $2=20$ Marks $)$

1. Write the imaginary part of $(x+i y)^{2}$.
2. Find the value of $\cosh ^{2} i-\sinh ^{2} i$, where $i=\sqrt{-1}$.
3. Given $\vec{F}=\sin y \hat{\imath}+\cos x \hat{\jmath}$ find $\operatorname{curl} \vec{F}$.
4. State Stoke's theorem.
5. What do you mean by orthogonality of trigonometric system?
6. Find the fundamental period of half wave rectifier.
7. What is a triangular matrix? Give an example.
8. State the condition for a matrix to be orthogonal and unitary.
9. Express Gauss integration formula and give its importance.

10 . What is interpolation?

PART - B

Answer any FOUR questions:
($4 \times 7.5=30$ Marks $)$
11. Derive Cauchy -Riemann equations.
12. Find the directional derivative of $F=x^{2}+y^{2}+z^{2}$ at $(2,-2,1)$ in the direction of $\hat{\imath}+\hat{\jmath}+2 \hat{k}$ and also check whether grad f is an irrotational.
13. Determine the Fourier series of the function $f(x)=x+\pi$ in the interval $-\pi<x<\pi$ with a period of 2π.
14. Show that the eigen vectors corresponding to distinct eigen values of a Hermitian matrix are orthogonal to each other.
15. Using Simpson's $1 / 3$ rule, Evaluate $\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{dx}$ with ten equal intervals.
16. Solve $\frac{d y}{d x}=1-y$ with $y=0$ at $x=0$ by using improved Euler's method and tabulate the values of y at $x=0.1,0.2$ and 0.3

PART - C

Answer any FOUR questions:
($4 \times 12.5=50$ Marks $)$
17. (i) Integrate $\int x d z$
a. the shortest path from 0 to $1+\mathrm{i}$
b. from 0 to 1 and vertically up to $1+2$ i.
(ii) Using Cauchy's integral formula, Integrate $\oint \frac{\sin z}{(z-\pi)^{4}} d z$ counterclockwise around the circle with $|z|=4$.
18. (i) Find the moment of inertia of a spherical lamina about its axis $\mathrm{S}: x^{2}+y^{2}+z^{2}=9$ of constant mass density and total Mass M about the z -axis.
(ii) Obtain the heat equation using Gauss-divergence theorem.
19. Find the Fourier cosine and Fourier sine integral of $f(x)=e^{-k x}$ where $x>0, k>0$.
20. Determine the eigen values and eigen vectors of $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 2\end{array}\right]$.
21. Derive Newton's forward interpolation formula and using it find the value of y at $x=0.23$ from the following table:

0.20	0.22	0.24	0.26	0.28	0.30
1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

22 (i) State and prove Green's theorem in the plane.
(ii) Show that $A=\left(\begin{array}{cc}1 & -3 \\ 4 & 2\end{array}\right)$ satisfies Cayley-Hamilton theorem.

